Squares in arithmetic progression over number fields
نویسندگان
چکیده
منابع مشابه
Five Squares in Arithmetic Progression over Quadratic Fields
We give several criteria to show over which quadratic number fields Q( √ D) there should exists a non-constant arithmetic progressions of five squares. This is done by translating the problem to determining when some genus five curves CD defined over Q have rational points, and then using a Mordell-Weil sieve argument among others. Using a elliptic Chabauty-like method, we prove that the only n...
متن کاملArithmetic progressions of four squares over quadratic fields
Let d be a squarefree integer. Does there exist four squares in arithmetic progression over Q( √ d )? We shall give a partial answer to this question, depending on the value of d. In the affirmative case, we construct explicit arithmetic progressions consisting of four squares over Q( √ d ).
متن کاملThree cubes in arithmetic progression over quadratic fields
We study the problem of the existence of arithmetic progressions of three cubes over quadratic number fields Q( √ D), where D is a squarefree integer. For this purpose, we give a characterization in terms of Q( √ D)-rational points on the elliptic curve E : y = x − 27. We compute the torsion subgroup of the Mordell–Weil group of this elliptic curve over Q( √ D) and we give an explicit answer, i...
متن کاملOn 4 Squares in Arithmetic Progression
x1 − 2x2 + x3 = 0 x2 − 2x3 + x4 = 0 are given by (x1, x2, x3, x4) = (±1,±1,±1,±1). Now, the above variety is an intersection between 2 quadrics in P. In general – i.e., except for the possibility of the variety being reducible or singular – an intersection between 2 quadrics in P is (isomorphic to) an elliptic curve and there is an algorithm that brings the curve to Weierstraß form by means of ...
متن کاملArithmetic over Function Fields
These notes accompany lectures presented at the Clay Mathematics Institute 2006 Summer School on Arithmetic Geometry. The lectures summarize some recent progress on existence of rational points of projective varieties defined over a function field over an algebraically closed field.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2012
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2011.07.010