Squares in arithmetic progression over number fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Five Squares in Arithmetic Progression over Quadratic Fields

We give several criteria to show over which quadratic number fields Q( √ D) there should exists a non-constant arithmetic progressions of five squares. This is done by translating the problem to determining when some genus five curves CD defined over Q have rational points, and then using a Mordell-Weil sieve argument among others. Using a elliptic Chabauty-like method, we prove that the only n...

متن کامل

Arithmetic progressions of four squares over quadratic fields

Let d be a squarefree integer. Does there exist four squares in arithmetic progression over Q( √ d )? We shall give a partial answer to this question, depending on the value of d. In the affirmative case, we construct explicit arithmetic progressions consisting of four squares over Q( √ d ).

متن کامل

Three cubes in arithmetic progression over quadratic fields

We study the problem of the existence of arithmetic progressions of three cubes over quadratic number fields Q( √ D), where D is a squarefree integer. For this purpose, we give a characterization in terms of Q( √ D)-rational points on the elliptic curve E : y = x − 27. We compute the torsion subgroup of the Mordell–Weil group of this elliptic curve over Q( √ D) and we give an explicit answer, i...

متن کامل

On 4 Squares in Arithmetic Progression

x1 − 2x2 + x3 = 0 x2 − 2x3 + x4 = 0 are given by (x1, x2, x3, x4) = (±1,±1,±1,±1). Now, the above variety is an intersection between 2 quadrics in P. In general – i.e., except for the possibility of the variety being reducible or singular – an intersection between 2 quadrics in P is (isomorphic to) an elliptic curve and there is an algorithm that brings the curve to Weierstraß form by means of ...

متن کامل

Arithmetic over Function Fields

These notes accompany lectures presented at the Clay Mathematics Institute 2006 Summer School on Arithmetic Geometry. The lectures summarize some recent progress on existence of rational points of projective varieties defined over a function field over an algebraically closed field.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2012

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2011.07.010